Synchronous processors

Imagine a processor with no interrupts. We can do a lot better and get rid of most exceptions (e.g. system calls, page faults etc.), most peripheral devices/buses, and even cache misses, but let’s start with interrupts. Modern micro-processors are bloated with circuitry that is designed to allow the precious CPU to switch back and forth between streams of code because cpu cycles were the scarcest resource. That was a great idea in the 1950s. But interrupts are expensive in compute time circuit complexity, and chip area. Interrupts  take microseconds to start processing – which is an eternity on a Ghz processor.  And they solve a problem that does not exist anymore: we have a lot of processor cores. In fact, one problem faced by computer architects is that it’s not easy to exploit parallel processing if you keep thinking in terms of 1950s computer architecture.

Suppose you have 32 cores and you make one or two of them poll I/O devices and the other 30 never get I/O interrupts, never run interrupt handling code, never have to save and restore state or context switch due to I/O interrupts.  What they do is run application code to completion or for a specified number of cycles or clock ticks. The cores reserved for operating system use manage all devices and even they don’t need interrupts because they can run a real-time OS that polls devices.

Continue reading “Synchronous processors”

Advertisements